
Deep Dive:
How Spark Uses Memory

Wenchen Fan
2017-5-19

Agenda

• Memory Usage Overview

• Memory Contention

• Tungsten Memory Format

• Cache-aware Computation

• Future Plans

Where Spark Uses Memory

• storage: memory used to cache data that will be used later.

(controlled by memory manager)

• execution: memory used for computation in shuffles, joins,

sorts and aggregations. (controlled by memory manager)

• others: user data structure, internal metadata, objects

created by UDF, etc.

Iterator

4, 3, 5, 1, 6,

2

Sort

1 2 3 4 5 6 Iterator

1, 2, 3, 4, 5,

6
take(3)

Execution

Memory

What if I want the sorted values again?

Iterator

4, 3, 5, 1, 6,

2

Sort

1 2 3 4 5 6 Iterator

1, 2, 3, 4, 5,

6
take(3)

Iterator

4, 3, 5, 1, 6,

2

Sort

1 2 3 4 5 6 Iterator

1, 2, 3, 4, 5,

6
take(4)

. . .

Iterator

4, 3, 5, 1, 6,

2

Sort

1 2 3 4 5 6 Iterator

1, 2, 3, 4, 5,

6

Execution

Memory

Cache

1 2 3 4 5 6

take(3) take(4) take(5) …

Storage

Memory

Memory Contention

• How to arbitrate memory between execution and storage?

• How to arbitrate memory across tasks running in parallel?

• How to arbitrate memory across operators running within the

same task?

Challenge #1

How to arbitrate memory between

execution and storage?

Easy, static assignment!

total available memory

execution storage

Easy, static assignment!

execution storage

Spill to

Disk

Easy, static assignment!

execution storage

Evict LRU blocks to

disk

Inefficient memory usage

leads to bad performance

Easy, static assignment!

execution storage

Execution can only use a fraction of the

memory, even when there is no storage!

Easy, static assignment!

execution storage

Efficient use of memory required user tuning

Unified Memory Management

execution storage

What happens if there is already

storage?

Unified Memory Management

execution storage

Evict LRU blocks to

disk

Unified Memory Management

execution storage

Design Considerations

• Why evict storage, not execution?

• Spilled execution data will always be read back from disk, where as

cached data may not.

• What if the application relies on cache?

Unified Memory Management

execution storage

This is bad!

Design Considerations

• Why evict storage, not execution?

• Spilled execution data will always be read back from disk, where as

cached data may not.

• What if the application relies on cache?

• allow users to specify a minimum unevictable amount of cached

data(not a reservation!)

Challenge #2

How to arbitrate memory across tasks

running in parallel?

Easy, static assignment!

Task 1

Worker machine has 4

cores
Each task gets ¼ of the total

memory

Task 2 Task 3 Task 4

Dynamic Assignment

Task 1

The share of each task depends on the

number of actively running tasks

Dynamic Assignment

Task 1

The share of each task depends on the

number of actively running tasks

Dynamic Assignment

Task 1

Now another task comes along, the

first task have to spill to free up

memory

Dynamic Assignment

Task 1

Each task is now assigned ½ of the

total memory

Task 2

Dynamic Assignment

Each task is now assigned ¼ of the

total memory

Task 1 Task 2 Task 3 Task 4

Dynamic Assignment

Task 3

Last remaining task gets all the

memory

Static vs Dynamic Assignment

• Both are fair and starvation free

• Static Assignment is simpler

• Dynamic assignment handles stragglers better

Challenge #3

How to arbitrate memory across

operators running within the same task?

SELECT age,
AVG(height)
 FROM students
 GROUP BY age
 ORDER BY
AVG(height)

students.groupBy("age")
 .avg("height")
 .orderBy("avg(height)")
 .collect() Scan

Project

Aggregate

Sort

Scan

Project

Aggregate

Sort

The task has 6

pages of memory

Scan

Project

Aggregate

Sort

Map { // age → (total,

count)

 20 → (483, 3)

 21 → (935, 5)

 22 → (172, 1)

 …

}

Scan

Project

Aggregate

Sort

All 6 pages were

used by

Aggregate,

leaving no

memory for Sort!

Scan

Project

Aggregate

Sort Solution #1

Reserve a page

for each operator

Scan

Project

Aggregate

Sort Solution #1

Reserve a page

for each operator

Starvation free, but still not fair…

What if there were more operators?

Scan

Project

Aggregate

Sort Solution #2

Cooperative spilling

Scan

Project

Aggregate

Sort Solution #2

Cooperative spilling

Scan

Project

Aggregate

Sort Solution #2

Cooperative spilling

Sort forces Aggregate to

spill a page to free

memory

Scan

Project

Aggregate

Sort Solution #2

Cooperative spilling

Sort needs more memory so

it forces Aggregate to spill

another page(and so on)

Scan

Project

Aggregate

Sort Solution #2

Cooperative spilling

Sort finishes with 3 pages

Aggregate does not have to

spill its remaining pages

Recap: three source of contention

How to arbitrate memory …

• between execution and storage?

• across tasks running in parallel?

• across operators running with the same task?

Instead of statically reserving memory in advance, deal

with memory contention when it raises by forcing

members to spill

How Spark keep data in memory

• Put data as objects on the heap and operate on these

objects.

• Data caching is simply using a list to keep data objects.

Data objects? No!

• It is hard to monitor and control the memory usage when
we have a lot of objects.

• Garbage collection will be the killer.

• Java objects has notable space overhead.

• High serialization cost when transfer data inside cluster.

Keep data as binary and operate on

binary

data

source

1010100001010
0010001001001
1010001000111
1010100100101

binary format

Cache
Manager

Memory
Manager

operators

allocate
memor

y

memor
y pages allocate

memor
y memor

y pages

Java Objects Based Row Format

Array

BoxedInteger(123)

String(“data”)

String(“bricks”)

Row

• 5+ objects

• high space overhead

• slow value accessing

• expensive hashCode()

Efficient Binary Format

“bricks” 0x0 123 32 40 “data” 4 6

null tracking

bitmap

(123, “data”, “bricks”)

offset and length of

data

offset and length of

data

Efficient Binary Format

0x

0

12

3

2

4
4

“data

”

0x

0

12

3

2

4
4

“data

”

0x

0

1

6
2 “da”

123 >

0?

JSON

files

substring

How to process binary

data more efficient?

Understanding CPU Cache

Memory is becoming

slower and slower

than CPU, we should

keep the frequently

accessed data in

CPU cache.

Understanding CPU Cache

Pre-fetch data into

CPU cache, with

cache line boundary.

The most 2 important

techniques in big data

are ...

Sort and Hash!

Naive Sort

record

record

record

pointer

pointer

pointer

Naive Sort

record

record

record

pointer

pointer

pointer

Naive Sort

record

record

record

pointer

pointer

pointer

Naive Sort

record

record

record

pointer

pointer

pointer

Naive Sort

Each comparison needs to access 2 different

memory regions, which makes it hard for CPU cache

to pre-fetch data, poor cache locality!

Cache-aware Sort

record

record

record

ptr

ptr

ptr

key-prefix

key-prefix

key-prefix

Cache-aware Sort

record

record

record

ptr

ptr

ptr

key-prefix

key-prefix

key-prefix

Cache-aware Sort

record

record

record

ptr

ptr

ptr

key-prefix

key-prefix

key-prefix

Cache-aware Sort

Most of the time, just go through the key-prefixes in a

linear fashion, good cache locality!

Naive Hash Map

key pointer value

key pointer value

key pointer value

Naive Hash Map

key pointer value

key pointer value

key pointer value

key

lookup

Naive Hash Map

key pointer value

key pointer value

key pointer value

key

hash(key) %

size

Naive Hash Map

key pointer value

key pointer value

key pointer value

key

compare these 2

keys

Naive Hash Map

key pointer value

key pointer value

key pointer value

key

linear

probing

Naive Hash Map

key pointer value

key pointer value

key pointer value

key

compare these 2

keys

Naive Hash Map

Each lookup needs many pointer dereferences and

key comparison when hash collision happens, and

jumps between 2 memory regions, bad cache locality!

ptr

ptr

ptr

full hash

full hash

full hash

Cache-aware Hash Map

key value

key value

key value

ptr

ptr

ptr

full hash

full hash

full hash

Cache-aware Hash Map

key value

key value

key value

key

lookup

ptr

ptr

ptr

full hash

full hash

full hash

Cache-aware Hash Map

key value

key value

key value

key

hash(key) % size, and

compare the full hash

ptr

ptr

ptr

full hash

full hash

full hash

Cache-aware Hash Map

key value

key value

key value

key

linear probing, and

compare the full hash

ptr

ptr

ptr

full hash

full hash

full hash

Cache-aware Hash Map

key value

key value

key value

key

compare these 2

keys

Cache-aware Hash Map

Each lookup mostly only needs one pointer

dereference and key comparison(full hash collision is

rare), and access data in a single memory region,

better cache locality!

Recap: Cache-aware data structure

How to improve cache locality …

• store key-prefix with pointer.

• store key full hash with pointer.

Store extra information to try to keep the

memory accessing in a single region.

What’s next

• Standard binary format, may use Apache Arrow.

• SPARK-19489

• SPARK-13534

• Columnar execution engine.

• SPARK-15687

Thank You

We Are Hiring!!!

Send your resume to

wenchen@databricks.com

Work at Hangzhou,

full time Spark developer!

