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Agenda

« Memory Usage Overview
« Memory Contention

- Tungsten Memory Format
« Cache-aware Computation
 Future Plans
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Where Spark Uses Memory

« storage: memory used to cache data that will be used later.
(controlled by memory manager)

« execution: memory used for computation in shuffles, joins,
sorts and aggregations. (controlled by memory manager)

« others: user data structure, internal metadata, objects
created by UDF, etc.
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Memory Contention

« How to arbitrate memory between execution and storage?
« How to arbitrate memory across tasks running in parallel?

« How to arbitrate memory across operators running within the
same task?
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Challenge #1

How to arbitrate memory between
execution and storage?
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Easy, static assignment!

execution storage

total available memory
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Easy, static assignment!

execution storage
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Easy, static assignment!

execution storage
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Evict LRU blocks to
disk #databricks



Inefficient memory usage
leads to bad performance
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Easy, static assignment!

execution storage
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Execution can only use a fraction of the
memory, even when there Is no storage!
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Easy, static assignment!

execution storage
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Efficient use of memory required user tuning
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Unifiled Memory Management

execution storage
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What happens if there is already
storage? & databric



Unifiled Memory Management

execution storage
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Evict LRU blocks to
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Unifiled Memory Management

execution storage
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Design Considerations

« Why evict storage, not execution?

 Spilled execution data will always be read back from disk, where as
cached data may not.

« What if the application relies on cache?
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Unifiled Memory Management

execution storage
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This Is bad!
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Design Considerations

« Why evict storage, not execution?

 Spilled execution data will always be read back from disk, where as
cached data may not.

« What if the application relies on cache?

- allow users to specify a minimum unevictable amount of cached
data(not a reservation!)
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Challenge #2

How to arbitrate memory across tasks
running in parallel?
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Easy, static assignment!

Worker machine has 4

cores
Each task gets % of the total

Memaor
I Task 2 Task 3 Task 4
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Dynamic Assignment

The share of each task depends on the
number of actively running tasks
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Dynamic Assignment

The share of each task depends on the
number of actively running tasks
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Dynamic Assignment

Now another task comes along, the
first task have to spill to free up
memory
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Dynamic Assignment

Each task is now assigned Y2 of the
total memory
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Dynamic Assignment

Each task is now assigned ¥ of the
total memory
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Dynamic Assignment

Last remaining task gets all the
memory
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Static vs Dynamic Assignment

- Both are fair and starvation free
« Static Assignment is simpler

« Dynamic assignment handles stragglers better
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Challenge #3

How to arbitrate memory across
operators running within the same task?
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students.groupBy("age")
.avg("height")
.orderBy("avg(height)")
.collect()

Aggregate
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The task has 6
pages of memory e
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Map { // age — (total,
count)

20 — (483, 3)
21 — (935, 5)
22 5 (172, 1)

)
)

Project

& databricks



All 6 pages were
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USEd by Aggregate _:I: _:B
Aggregate, =| =
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memory for Sort! Project
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Solution #1
Reserve a page

for each o

perator
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Solution #1

Reserve a page
for each operator
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Starvation free, but still not fauir...

Aggregate

What if there were more operators? e
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Solution #2

Cooperative spilling

Aggregate
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Solution #2
Cooperative spilling
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Solution #2
Cooperative spilling

Aggregate

)
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Sort forces Aggregate to
spill a page to free
memory

Project
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Solution #2
Cooperative spilling

njn,

Aggregate

Sort needs more memory so
It forces Aggregate to spill
another page(and so on)

Project
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Solution #2
Cooperative spilling

Aggregate _:Ij ;[j _:[j

q
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Sort finishes with 3 pages

Aggregate does not have to
spill its remaining pages
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Recap: three source of contention

How to arbitrate memory ...
- between execution and storage?

« across tasks running in parallel?
* aCross operators running with the same task?

Instead of statically reserving memory in advance, deal
with memory contention when it raises by forcing
members to spill & databricks



How Spark keep data in memory

« Put data as objects on the heap and operate on these
objects.

« Data caching is simply using a list to keep data objects.
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Data objects? No!

It is hard to monitor and control the memory usage when
we have a lot of objects.

Garbage collection will be the killer.

Java objects has notable space overhead.

High serialization cost when transfer data inside cluster.
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Keep data as binary and operate on

binary algcate
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data binary format operators
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Java Objects Based Row Format

* 5+ objects

* high space overhead
» slow value accessing
« expensive hashCode() #databricks



Efficient Binary Format
(123, “data”, “bricks”)

offset and length of

ata
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null tracking offset and length of = databricks



Efficient Binary Format
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How to process binary
data more efficient?
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Understanding CPU Cache

Memory Is becoming
slower and slower
than CPU, we should
keep the frequently
accessed data In
CPU cache.
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Understanding CPU Cache

Pre-fetch data into
CPU cache, with
cache line boundary.
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The most 2 important
techniques In big data
are ...

Sort and Hash!
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Naive Sort
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Naive Sort
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Naive Sort
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Naive Sort
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Nalve Sort

Each comparison needs to access 2 different
memory regions, which makes it hard for CPU cache

to pre-fetch data, poor cache locality!
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Cache-aware Sort
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Cache-aware Sort
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Cache-aware Sort
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Cache-aware Sort

Most of the time, just go through the key-prefixes in a
linear fashion, good cache locality!
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Nalve Hash Map
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Nalve Hash Map

lookup

ey |

& databricks



Nalve Hash Map

hash(key) %
size
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Nalve Hash Map

compare these 2
keys
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Nalve Hash Map

linear
probing

& databricks



Nalve Hash Map

compare these 2
keys
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Nalve Hash Map

Each lookup needs many pointer dereferences and
key comparison when hash collision happens, and
jumps between 2 memory regions, bad cache locality!
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Cache-aware Hash Map
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Cache-aware Hash Map

lookup

ey |
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Cache-aware Hash Map

hash(key) % size, and
compare the full hash
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Cache-aware Hash Map

linear probing, and
compare the full hash
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Cache-aware Hash Map

compare these 2
keys
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Cache-aware Hash Map

Each lookup mostly only needs one pointer
dereference and key comparison(full hash collision is
rare), and access data in a single memory region,
better cache locality!
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Recap: Cache-aware data structure

How to improve cache locality ...
- store key-prefix with pointer.
- store key full hash with pointer.

Store extra information to try to keep the
memory accessing in a single region.
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What's next

« Standard binary format, may use Apache Arrow.
« SPARK-19489
+ SPARK-13534

« Columnar execution engine.
+ SPARK-15687
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Thank You
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We Are Hiring!!!

Send your resume to
wenchen@databricks.com

Work at Hangzhou,
full time Spark developer!
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