Deep Dive:
How Spark Uses Memory

Wenchen Fan
2017-5-19 € databricks

Agenda

« Memory Usage Overview
« Memory Contention

- Tungsten Memory Format
« Cache-aware Computation
 Future Plans

#databricks

& databricks

Where Spark Uses Memory

« storage: memory used to cache data that will be used later.
(controlled by memory manager)

« execution: memory used for computation in shuffles, joins,
sorts and aggregations. (controlled by memory manager)

« others: user data structure, internal metadata, objects
created by UDF, etc.

#databricks

Execution

Memory
[)

4’ 31 51 11 6’ (Sort] 11 21 31 41 51

f Iterator]—>H—>f Iterator]—>[take(3)]

What If | want the sorted values again?

#databricks

4’ 31 51 1’ 6’ (Sort] 11 27 37 47 51

f Iterator]—>an Iterator]——>[take(3)]

41 31 51 11 61 (Sort] 11 21 37 47 5’

f Iterator]—>nﬂ—>f Iterator]——{ take(4)]

#databricks

Execution Storage
Memory l Memory |

|)

43516 Sort 1,2,3,4,5,

Iterator lterator

 _
[take(3)] [take(4)] [take(5)]

& databricks

Memory Contention

« How to arbitrate memory between execution and storage?
« How to arbitrate memory across tasks running in parallel?

« How to arbitrate memory across operators running within the
same task?

#databricks

Challenge #1

How to arbitrate memory between
execution and storage?

#databricks

Easy, static assignment!

execution storage

total available memory

#databricks

Easy, static assignment!

execution storage

| I —
TIIL 1

Spill to
Disk #databricks

Easy, static assignment!

execution storage

e
T*IIIIIIIIIII

Evict LRU blocks to
disk #databricks

Inefficient memory usage
leads to bad performance

#databricks

Easy, static assignment!

execution storage

e
A1

Execution can only use a fraction of the
memory, even when there Is no storage!

& databricks

Easy, static assignment!

execution storage

—{
INRNRRNRIN

Efficient use of memory required user tuning
#databricks

Unifiled Memory Management

execution storage

I —
TITTHTTTIT

What happens if there is already
storage? & databric

Unifiled Memory Management

execution storage

—_—)
T T

Evict LRU blocks to
disk & databricks

Unifiled Memory Management

execution storage

—]
TITTTHTTTTITTIT

& databricks

Design Considerations

« Why evict storage, not execution?

 Spilled execution data will always be read back from disk, where as
cached data may not.

« What if the application relies on cache?

#databricks

Unifiled Memory Management

execution storage

—]
TN O T

This Is bad!

& databricks

Design Considerations

« Why evict storage, not execution?

 Spilled execution data will always be read back from disk, where as
cached data may not.

« What if the application relies on cache?

- allow users to specify a minimum unevictable amount of cached
data(not a reservation!)

#databricks

Challenge #2

How to arbitrate memory across tasks
running in parallel?

#databricks

Easy, static assignment!

Worker machine has 4

cores
Each task gets % of the total

Memaor
I Task 2 Task 3 Task 4

& databricks

Dynamic Assignment

The share of each task depends on the
number of actively running tasks

& databricks

Dynamic Assignment

The share of each task depends on the
number of actively running tasks

#databricks

Dynamic Assignment

Now another task comes along, the
first task have to spill to free up
memory

#databricks

Dynamic Assignment

Each task is now assigned Y2 of the
total memory

& databricks

Dynamic Assignment

Each task is now assigned ¥ of the
total memory

& databricks

Dynamic Assignment

Last remaining task gets all the
memory

& databricks

Static vs Dynamic Assignment

- Both are fair and starvation free
« Static Assignment is simpler

« Dynamic assignment handles stragglers better

#databricks

Challenge #3

How to arbitrate memory across
operators running within the same task?

#databricks

i\gblthT % e,

eig
FROM students
GROUP BY age

AVSERTgh '

students.groupBy("age")
.avg("height")
.orderBy("avg(height)")
.collect()

Aggregate

q
’
-

#databricks

The task has 6
pages of memory e

IFI
IFI
-

DRERRRER

& databricks

Map { // age — (total,
count)

20 — (483, 3)
21 — (935, 5)
22 5 (172, 1)

)
)

Project

& databricks

All 6 pages were

| N[5
USEd by Aggregate _:I: _:B
Aggregate, =| =
leaving no ~
memory for Sort! Project

& databricks

Solution #1
Reserve a page

for each o

perator

DR

3 2

Aggregate

q
’
-

& databricks

Solution #1

Reserve a page
for each operator

EIE)ENE

Starvation free, but still not fauir...

Aggregate

What if there were more operators? e

11T

#databricks

Solution #2

Cooperative spilling

Aggregate

DRERRRER

iddd

& databricks

Solution #2
Cooperative spilling

)
)

Project

& databricks

Solution #2
Cooperative spilling

Aggregate

)
)

Sort forces Aggregate to
spill a page to free
memory

Project

& databricks

Solution #2
Cooperative spilling

njn,

Aggregate

Sort needs more memory so
It forces Aggregate to spill
another page(and so on)

Project

& databricks

Solution #2
Cooperative spilling

Aggregate _:Ij ;[j _:[j

q
’
-

Sort finishes with 3 pages

Aggregate does not have to
spill its remaining pages

#databricks

Recap: three source of contention

How to arbitrate memory ...
- between execution and storage?

« across tasks running in parallel?
* aCross operators running with the same task?

Instead of statically reserving memory in advance, deal
with memory contention when it raises by forcing
members to spill & databricks

How Spark keep data in memory

« Put data as objects on the heap and operate on these
objects.

« Data caching is simply using a list to keep data objects.

#databricks

Data objects? No!

It is hard to monitor and control the memory usage when
we have a lot of objects.

Garbage collection will be the killer.

Java objects has notable space overhead.

High serialization cost when transfer data inside cluster.

#databricks

Keep data as binary and operate on

binary algcate
Cache Y —
Manager * p——
y pages allocate
memor
\ memc&A y
y pages

1010100001010 o
0010001001001 {g}
‘ 1010001000111 ‘ =

1010100100101

data binary format operators
SoOlirce & databricks

Java Objects Based Row Format

* 5+ objects

* high space overhead
» slow value accessing
« expensive hashCode() #databricks

Efficient Binary Format
(123, “data”, “bricks”)

offset and length of

ata
\ \ \

null tracking offset and length of = databricks

Efficient Binary Format

-— || JSON
1 files

Bl e
0 0 0
}]

123 > substring ®databricks

How to process binary
data more efficient?

#databricks

Understanding CPU Cache

Memory Is becoming
slower and slower
than CPU, we should
keep the frequently
accessed data In
CPU cache.

#databricks

Understanding CPU Cache

Pre-fetch data into
CPU cache, with
cache line boundary.

#databricks

The most 2 important
techniques In big data
are ...

Sort and Hash!

#databricks

Naive Sort

& databricks

Naive Sort

& databricks

Naive Sort

& databricks

Naive Sort

& databricks

Nalve Sort

Each comparison needs to access 2 different
memory regions, which makes it hard for CPU cache

to pre-fetch data, poor cache locality!

#databricks

Cache-aware Sort

& databricks

Cache-aware Sort

& databricks

Cache-aware Sort

& databricks

Cache-aware Sort

Most of the time, just go through the key-prefixes in a
linear fashion, good cache locality!

#databricks

Nalve Hash Map

& databricks

Nalve Hash Map

lookup

ey |

& databricks

Nalve Hash Map

hash(key) %
size

& databricks

Nalve Hash Map

compare these 2
keys

& databricks

Nalve Hash Map

linear
probing

& databricks

Nalve Hash Map

compare these 2
keys

& databricks

Nalve Hash Map

Each lookup needs many pointer dereferences and
key comparison when hash collision happens, and
jumps between 2 memory regions, bad cache locality!

#databricks

Cache-aware Hash Map

& databricks

Cache-aware Hash Map

lookup

ey |

& databricks

Cache-aware Hash Map

hash(key) % size, and
compare the full hash

& databricks

Cache-aware Hash Map

linear probing, and
compare the full hash

& databricks

Cache-aware Hash Map

compare these 2
keys

& databricks

Cache-aware Hash Map

Each lookup mostly only needs one pointer
dereference and key comparison(full hash collision is
rare), and access data in a single memory region,
better cache locality!

#databricks

Recap: Cache-aware data structure

How to improve cache locality ...
- store key-prefix with pointer.
- store key full hash with pointer.

Store extra information to try to keep the
memory accessing in a single region.

#databricks

What's next

« Standard binary format, may use Apache Arrow.
« SPARK-19489
+ SPARK-13534

« Columnar execution engine.
+ SPARK-15687

#databricks

Thank You

€ databricks

We Are Hiring!!!

Send your resume to
wenchen@databricks.com

Work at Hangzhou,
full time Spark developer!

#databricks

