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Agenda 

• Memory Usage Overview 

• Memory Contention 
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• Cache-aware Computation 

• Future Plans 





Where Spark Uses Memory 

• storage: memory used to cache data that will be used later. 

(controlled by memory manager) 

 

• execution: memory used for computation in shuffles, joins, 

sorts and aggregations. (controlled by memory manager) 

 

• others: user data structure, internal metadata, objects 

created by UDF, etc. 
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What if I want the sorted values again? 
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Memory Contention 

• How to arbitrate memory between execution and storage? 

 

• How to arbitrate memory across tasks running in parallel? 

 

• How to arbitrate memory across operators running within the 

same task? 



Challenge #1 

How to arbitrate memory between 

execution and storage? 



Easy, static assignment! 

total available memory 

execution storage 



Easy, static assignment! 

execution storage 

Spill to 

Disk 



Easy, static assignment! 

execution storage 

Evict LRU blocks to 

disk 



Inefficient memory usage 

leads to bad performance 



Easy, static assignment! 

execution storage 

Execution can only use a fraction of the 

memory, even when there is no storage! 



Easy, static assignment! 

execution storage 

Efficient use of memory required user tuning 



Unified Memory Management 

execution storage 

What happens if there is already 

storage? 



Unified Memory Management 

execution storage 

Evict LRU blocks to 
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Unified Memory Management 

execution storage 



Design Considerations 

• Why evict storage, not execution? 

• Spilled execution data will always be read back from disk, where as 

cached data may not. 

 

• What if the application relies on cache? 



Unified Memory Management 

execution storage 

This is bad! 



Design Considerations 

• Why evict storage, not execution? 

• Spilled execution data will always be read back from disk, where as 

cached data may not. 

 

• What if the application relies on cache? 

• allow users to specify a minimum unevictable amount of cached 

data(not a reservation!) 



Challenge #2 

How to arbitrate memory across tasks 

running in parallel? 



Easy, static assignment! 

Task 1 

Worker machine has 4 

cores 
Each task gets ¼ of the total 

memory 

Task 2 Task 3 Task 4 



Dynamic Assignment 

Task 1 

The share of each task depends on the 

number of actively running tasks 



Dynamic Assignment 

Task 1 

The share of each task depends on the 

number of actively running tasks 



Dynamic Assignment 

Task 1 

Now another task comes along, the 

first task have to spill to free up 

memory  



Dynamic Assignment 

Task 1 

Each task is now assigned ½ of the 

total memory 

Task 2 



Dynamic Assignment 

Each task is now assigned ¼ of the 

total memory 

Task 1 Task 2 Task 3 Task 4 



Dynamic Assignment 

Task 3 

Last remaining task gets all the 

memory 



Static vs Dynamic Assignment 

• Both are fair and starvation free 

 

• Static Assignment is simpler 

 

• Dynamic assignment handles stragglers better 



Challenge #3 

How to arbitrate memory across 

operators running within the same task? 



SELECT age, 
AVG(height) 
    FROM students 
    GROUP BY age 
    ORDER BY 
AVG(height) 

students.groupBy("age") 
    .avg("height") 
    .orderBy("avg(height)") 
    .collect() Scan 

Project 

Aggregate 

Sort 
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Project 

Aggregate 

Sort 

The task has 6 

pages of memory 



Scan 

Project 

Aggregate 

Sort 

Map { // age → (total, 

count) 

    20 → (483, 3) 

    21 → (935, 5) 

    22 → (172, 1) 

    … 

} 



Scan 

Project 

Aggregate 

Sort 

All 6 pages were 

used by 

Aggregate, 

leaving no 

memory for Sort! 



Scan 

Project 

Aggregate 

Sort Solution #1 

Reserve a page 

for each operator 
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Project 

Aggregate 

Sort Solution #1 

Reserve a page 

for each operator 

Starvation free, but still not fair… 

What if there were more operators? 
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Cooperative spilling 
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Project 

Aggregate 

Sort Solution #2 

Cooperative spilling 

Sort forces Aggregate to 

spill a page to free 

memory 
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Project 

Aggregate 

Sort Solution #2 

Cooperative spilling 

Sort needs more memory so 

it forces Aggregate to spill 

another page(and so on) 



Scan 

Project 

Aggregate 

Sort Solution #2 

Cooperative spilling 

Sort finishes with 3 pages 

Aggregate does not have to 

spill its remaining pages 



Recap: three source of contention 

How to arbitrate memory … 

• between execution and storage? 

• across tasks running in parallel? 

• across operators running with the same task? 

Instead of statically reserving memory in advance, deal 

with memory contention when it raises by forcing 

members to spill 



How Spark keep data in memory 

• Put data as objects on the heap and operate on these 

objects. 

 

• Data caching is simply using a list to keep data objects. 



Data objects? No! 

• It is hard to monitor and control the memory usage when 
we have a lot of objects. 

 

• Garbage collection will be the killer. 

 

• Java objects has notable space overhead. 

 

• High serialization cost when transfer data inside cluster. 



Keep data as binary and operate on 
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Java Objects Based Row Format 

Array 

BoxedInteger(123) 

String(“data”) 

String(“bricks”) 

Row 

• 5+ objects 

• high space overhead 

• slow value accessing 

• expensive hashCode() 



Efficient Binary Format 

“bricks” 0x0 123 32 40 “data” 4 6 

null tracking 

bitmap 

(123, “data”, “bricks”) 

offset and length of 

data 

offset and length of 

data 



Efficient Binary Format 
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How to process binary 

data more efficient? 



Understanding CPU Cache 

Memory is becoming 

slower and slower 

than CPU, we should 

keep the frequently  

accessed data in 

CPU cache. 



Understanding CPU Cache 

Pre-fetch data into 

CPU cache, with 

cache line boundary. 



The most 2 important 

techniques in big data 

are ... 

Sort and Hash! 
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Naive Sort 

Each comparison needs to access 2 different 

memory regions, which makes it hard for CPU cache 

to pre-fetch data, poor cache locality! 



Cache-aware Sort 
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Cache-aware Sort 
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Cache-aware Sort 

Most of the time, just go through the key-prefixes in a 

linear fashion, good cache locality! 



Naive Hash Map 

key pointer value 

key pointer value 

key pointer value 



Naive Hash Map 

key pointer value 

key pointer value 

key pointer value 

key 

lookup 



Naive Hash Map 

key pointer value 
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Naive Hash Map 

key pointer value 
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keys 



Naive Hash Map 
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Naive Hash Map 
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Naive Hash Map 

Each lookup needs many pointer dereferences and 

key comparison when hash collision happens, and 

jumps between 2 memory regions, bad cache locality! 
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key value 
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hash(key) % size, and 

compare the full hash 
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Cache-aware Hash Map 
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Cache-aware Hash Map 

Each lookup mostly only needs one pointer 

dereference and key comparison(full hash collision is 

rare), and access data in a single memory region, 

better cache locality! 



Recap: Cache-aware data structure 

How to improve cache locality … 

• store key-prefix with pointer. 

• store key full hash with pointer. 

Store extra information to try to keep the 

memory accessing in a single region. 



What’s next 

• Standard binary format, may use Apache Arrow. 

• SPARK-19489 

• SPARK-13534  

 

• Columnar execution engine. 

• SPARK-15687 

 



Thank You 



We Are Hiring!!! 

Send your resume to 

wenchen@databricks.com 

Work at Hangzhou, 

full time Spark developer! 


