Deep Dive: How Spark Uses Memory

Wenchen Fan 2017-5-19

Agenda

- Memory Usage Overview
- Memory Contention
- Tungsten Memory Format
- Cache-aware Computation
- Future Plans

databricks

Where Spark Uses Memory

• **storage**: memory used to cache data that will be used later. (controlled by memory manager)

• execution: memory used for computation in shuffles, joins, sorts and aggregations. (controlled by memory manager)

• others: user data structure, internal metadata, objects created by UDF, etc.

What if I want the sorted values again?

Memory Contention

• How to arbitrate memory between execution and storage?

• How to arbitrate memory across tasks running in parallel?

 How to arbitrate memory across operators running within the same task?

Challenge #1

How to arbitrate memory between execution and storage?

total available memory

Inefficient memory usage leads to bad performance

Execution can only use a fraction of the memory, even when there is no storage!

Efficient use of memory required user tuning

execution

What happens if there is already storage?

execution

Evict LRU blocks to disk #databricks

Design Considerations

- Why evict storage, not execution?
 - Spilled execution data will always be read back from disk, where as cached data may not.

• What if the application relies on cache?

This is bad!

Design Considerations

- Why evict storage, not execution?
 - Spilled execution data will always be read back from disk, where as cached data may not.

- What if the application relies on cache?
 - allow users to specify a minimum unevictable amount of cached data(not a reservation!)

Challenge #2

How to arbitrate memory across tasks running in parallel?

Worker machine has 4 cores Each task gets ¼ of the total

memory

Task 1	Task 2	Task 3	Task 4
--------	--------	--------	--------

The share of each task depends on the number of actively running tasks

The share of each task depends on the number of actively running tasks

Now another task comes along, the first task have to spill to free up memory

Each task is now assigned 1/2 of the total memory

Each task is now assigned ¼ of the total memory

Last remaining task gets all the memory

Static vs Dynamic Assignment

Both are fair and starvation free

Static Assignment is simpler

• Dynamic assignment handles stragglers better

Challenge #3

How to arbitrate memory across operators running within the same task?

SELECT age, AVG (height) FROM students GROUP BY age ORDER BY AVG (height)

students.groupBy("age")
.avg("height")
.orderBy("avg(height)")
.collect()

The task has 6 pages of memory

Map { // age \rightarrow (total, count)

 $20 \rightarrow (483, 3)$ $21 \rightarrow (935, 5)$ $22 \rightarrow (172, 1)$

All 6 pages were used by **Aggregate**, leaving no memory for **Sort**!

Solution #1

Reserve a page for each operator

Solution #2 Cooperative spilling

Solution #2 Cooperative spilling

Sort needs more memory so it forces Aggregate to spill another page(and so on)

databricks

Recap: three source of contention

How to arbitrate memory ...

- between execution and storage?
- across tasks running in parallel?
- across operators running with the same task?

Instead of statically reserving memory in advance, deal with memory contention when it raises by forcing members to spill

How Spark keep data in memory

Data objects? No!

- It is hard to monitor and control the memory usage when we have a lot of objects.
- Garbage collection will be the killer.
- Java objects has notable space overhead.
- High serialization cost when transfer data inside cluster.

Java Objects Based Row Format

- 5+ objects ullet
- high space overhead lacksquare
- slow value accessing
- expensive hashCode()

Efficient Binary Format

spark.read.schema("i int, j string").json("/tmp/x.json")
.filter(\$"i" > 0)
.select(\$"j".substr(0, 2))

How to process binary data more efficient?

Understanding CPU Cache

1980: no cache in microprocessor;

1995 2-level cache

Memory is becoming slower and slower than CPU, we should keep the frequently accessed data in CPU cache.

Understanding CPU Cache

Pre-fetch data into CPU cache, with cache line boundary.

The most 2 important techniques in big data are ...

Sort and Hash!

Each comparison needs to access 2 different memory regions, which makes it hard for CPU cache to pre-fetch data, poor cache locality!

Most of the time, just go through the key-prefixes in a linear fashion, good cache locality!

hash(key) % size

compare these 2 keys

Each lookup needs many pointer dereferences and key comparison when hash collision happens, and jumps between 2 memory regions, bad cache locality!

Cache-aware Hash Map

Cache-aware Hash Map

key

Cache-aware Hash Map

hash(key) % size, and compare the full hash

Cache-aware Hash Map

linear probing, and compare the full hash

Cache-aware Hash Map

Cache-aware Hash Map

Each lookup mostly only needs one pointer dereference and key comparison(full hash collision is rare), and access data in a single memory region, better cache locality!

Recap: Cache-aware data structure

How to improve cache locality ...

- store key-prefix with pointer.
- store key full hash with pointer.

Store extra information to try to keep the memory accessing in a single region.

What's next

- Standard binary format, may use Apache Arrow.
 - SPARK-19489
 - SPARK-13534

- Columnar execution engine.
 - SPARK-15687

Thank You

We Are Hiring!!!

Send your resume to wenchen@databricks.com

Work at Hangzhou, full time Spark developer!

